Analizatory masy

W spektrometrach mas stosowane są różne typy analizatorów masy:

  • Analizator czasu przelotu (Time Of FlightTOF) – jony wprowadzane do analizatora są przyspieszane przy pomocy impulsu elektrycznego i zaczynają dryfować przez komorę analizatora. Na końcu analizatora znajduje się detektor jonów połączony z urządzeniem rejestrującym czas od impulsu przyspieszającego do momentu uderzenia określonego jonu w detektor. Pomiar m/z jest oparty na fakcie, że czas przelotu zależy od prędkości jonu, a prędkość uzyskana przez jon w w polu elektrycznym zależy od jego masy. Obecnie stosuje się często analizatory czasu przelotu ze zwierciadłem elektrostatycznym, które zwiększa rozdzielczość aparatu, ale zmniejsza zakres dopuszczalnych mas cząsteczkowych. Analizatory TOF charakteryzują się stosunkowo dużymi rozdzielczościami rzędu kilkudziesięciu tysięcy (do 100 000) oraz dosyć dużą czułością. Są często stosowane razem ze źródłami jonów MALDI.

 
Schemat Spektrometru mas z analizatorem typu sektor magnetyczny i źródłem jonów typu EI
  • Sektor magnetyczny (Magnetic sector) – analizator ten wykorzystuje zjawisko zmiany toru lotu jonów w . Tor lotu jonów jest zakrzywiany, promień toru zależy od stosunku masy do ładunku (m/z) i prędkości jonu, a także od parametrów pola magnetycznego. Sektor magnetyczny charakteryzuje się stosunkowo małą rozdzielczością – mniej niż 5000. Związane jest to głównie z dużymi różnicami prędkości cząsteczek wpadających do urządzenia. Problem ten rozwiązuje przez zastosowanie sektora elektrycznego przed sektorem magnetycznym, w którym cząsteczki są rozpędzane tak, aby wszystkie uzyskały zbliżoną prędkość, dzięki czemu względne różnice ich prędkości maleją. Stosuje się też separatory prędkości
  • Sektor elektryczny (Electric Sector) – urządzenie to wykorzystuje zjawisko zmiany toru lotu jonów w jest zbudowane z dwóch równoległych, zakrzywionych płyt, do których przyłożono . Jony o jednakowym stosunku ładunku do  mają jednakowe tory lotu w sektorze elektrycznym. Za sektorem elektrycznym znajduje się szczelina, przez którą przelatują tylko jony o określonej energii. Sektor elektryczny jest stosowany przed sektorami magnetycznymi w spektrometrach mas o podwójnym ogniskowaniu

 
Budowa kwadrupola
  • Kwadrupol (Quadrupole) – analizator ten jest zbudowany z czterech symetrycznie ułożonych równoległych prętów. Działa jako filtr masy – w jednym momencie przepuszcza tylko jony o określonym stosunku masy do ładunku (m/z). Dzieje się to dzięki przykładaniu do prętów o określonej częstotliwości i napięciu oraz napięcia stałego. Kwadrupol można ustawić tak, aby przepuszczał jony o szerokim lub wąskim zakresie m/z. Jony przechodzące przez kwadrupol mogą być poddawane dalszej analizie

 
Podwójna liniowa pułapka jonowa tandemowego spektrometru mas Orbitrap Velos. Własność
  • Pułapka jonowa (Ion TrapIT) – jest analizatorem pozwalającym na przetrzymywanie jonów. Analizator ten działa na zasadzie podobnej do kwadrupola. Manipulując parametrami prądu przyłączonego do elektrod, można uwięzić w pułapce jony o określonym stosunku masy do ładunku (m/z) lub można uwięzić jony o szerokim zakresie m/z. Pomiaru masy dokonuje się przez uwięzienie w pułapce jonów o szerokim zakresie m/z i wyrzucanie z pułapki kolejnych grup jonów o określonym m/z. Wnętrze pułapki jonowej wypełnione jest gazem obojętnympod ciśnieniem rzędu 10-1 . Jeżeli jony w pułapce zostaną wzbudzone (przyspieszone), zderzenia z atomami helu spowodują fragmentację jonów. Pułapki jonowe charakteryzują się zwykle dość niewielką rozdzielczością (kilka tysięcy) oraz bardzo dużą czułością
  • Liniowa pułapka jonowa (Linear Ion TrapLinear Trap QuadrupoleLTQ) – jest zbudowana tak jak kwadrupol, z czterech równoległych prętów. Na obu końcach analizatora przykładany jest potencjał elektryczny, który uniemożliwia ucieczkę jonów z analizatora. Pomiar masy odbywa się przez wyrzucanie jonów o określonym m/z z analizatora i detekcję. W liniowych pułapkach jonowych stosuje się często dwa detektory, co zwiększa czułość. Liniowe pułapki jonowe charakteryzują się bardzo dużą czułością (większą niż zwykłe pułapki jonowe) i stosunkowo niską rozdzielczością (kilka tysięcy). W liniowej pułapce jonowej jony można przechowywać, poddawać fragmentacji i mierzyć masy fragmentów
  • Analizator cyklotronowego rezonansu jonów (Ion Cyclotron ResonanceICR) – analizator jest , jony poruszają się po torach kołowych w silnym polu magnetycznym i zmiennym polu elektrycznym. W cyklotronie przyspieszane są tylko te jony, które zataczają okręgi z częstotliwością taką samą, jaką ma zmienne pole elektryczne, pozostałe naprzemiennie przyspieszane i hamowane (pułapkowane). Przyspieszane jony poruszają się po okręgach o coraz większym promieniu, aż dotrą do elektrod detekcyjnych. Widmo m/z jest tworzone przez działanie na jony polem elektrycznym o zmieniającej się częstotliwości i rejestrację zmian natężenia prądu w płytach detekcyjnych albo przez zmianę absorpcji fali elektromagnetycznej wytwarzającej zmienne pole elektryczne. W analizatorze panuje bardzo wysoka próżnia – ciśnienie nie większe niż 10-4, zwykle 10-6 lub mniejsze. Rozdzielczości analizatorów cyklotronowych mogą być bardzo duże, zwykle kilkaset tysięcy, mogą dochodzić nawet do miliona (przy m/z 500 Th); i szybko zmniejszają się wraz ze wzrostem m/z analizowanej cząsteczki
  • Analizator cyklotronowego rezonansu jonów z fourierowską transformacją wyników (Fourier Transform Ion Cyclotron ResonanceFT-ICR) – analizator ten działa podobnie jak analizator cyklotronowego rezonansu jonowego, ale zastosowano w nim inną, niż w ICR metodę zbierania danych. W analizatorze oprócz płyt przyspieszających, znajdują się też płyty detekcyjne. W analizatorze FT-ICR wzbudzanie przeprowadza się tak jak w ICR, ale trwa ono krócej, tak że nie dochodzi do selekcji jonów o wybranym stosunku m/z. Ruch jonów w cyklotronie zależy od ich stosunku masy do ładunku. Poruszające się w cyklotronie ładunki wzbudzają na płytach detektora sygnał elektryczny, który jest rejestrowany. Sygnał pochodzi od wszystkich jonów poruszających się w cyklotronie, jest zależnością natężenia pola elektrycznego od czasu. Zależność ta jest przekształcana matematycznie przy pomoc w zależność amplitudy od częstotliwości, która odpowiada spektrum masy do ładunku jonów. Analizatory FT-ICR są znacznie szybsze niż analizatory ICR, inne ich parametry (rozdzielczość, czułość itp.) są podobne. W przeciwieństwie do innych metod nie niszczą rejestrowanych jonów, dzięki czemu jony mogą być poddane dalszej obróbce i detekcji w innych warunkach. Analizatory FT-ICR wyparły obecnie z rynku analizatory ICR.

 
Orbitrap - częściowy przekrój. Zdjęcie zrobiono w zakładach produkujących spektrometry mas, Thermo Scientific, Niemcy
  • Orbitrap – zbudowany jest z dwóch elektrod zewnętrznych i jednej elektrody wewnętrznej, pomiędzy którymi poruszają się jony. Tak więc analizator ten jest rodzajem pułapki jonowej. Elektrody zewnętrzne mają kształt zwężających się na jednym z końców beczek. Elektrody te są ustawione szerszymi końcami do siebie. Wrzecionowata elektroda wewnętrzna umieszczona jest w środku urządzenia, jej oś symetrii pokrywa się z osiami symetrii elektrod zewnętrznych. Jony wprowadzone do analizatora poruszają się dookoła oraz wzdłuż jego osi. Pomiar częstotliwości oscylacji jonów wzdłuż osi analizatora pozwala na obliczenie stosunku masy do ładunku jonu. Orbitrap charakteryzuje się dużą rozdzielczością, która wzrasta wraz z rozwojem konstrukcji analizatora (obecnie do 240 000 przy pomiarze jonu o stosunku masy do ładunku około 400 Th)